题型1方程(组)型应用题
方程是描述丰富多彩的现实世界数量关系的重要的语言,也是中考命题所要考察的重点热点之一。我们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识。并学会用数学中方程的思想去分析和解决一些实际问题。解此类问题的方法是:(1)审题,明确未知量和已知量;(2)设未知数,务必写明意义和单位;(3)依题意,找出等量关系,列出等量方程;(4)解方程,必要时验根。
题型2不等式(组)型应用题
现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值。但可以求出或确定这一问题中某个量的变化范围(趋势),从而对所有研究问题的面貌有一个比较清楚的认识。本节中,我们所要讨论的问题大多是要求出某个量的取值范围或极端可能性,它们涉及我们日常生活中的方方面面。
列不等式时要从题意出发,设好未知量之后,用心体会题目所规定的实际情境,从中找出不等关系。
题型3函数型应用问题
函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带。它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的应用性问题也是命题热点之一,多数省市作压轴题。因此,在中考复习中,关注这一热点显得十分重要。解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围。
题型4统计型应用问题
统计的内容有着非常丰富的实际背景,其实际应用性特别强。中考试题的热点之一,就是考查统计思想方法,同时考查学生应用数学的意识和处理数据解决实际问题的能力。
题型5几何型应用问题
几何应用题常常以现实生活情景为背景,考查学生识别图形的能力、动手操作图形的能力、运用几何知识解决实际问题的能力以及探索、发现问题的能力和观察、想像、分析、综合、比较、演绎、归纳、抽象、概括、类比、分类讨论、数形结合等数学思想方法。